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SUMMARY 

An i nves t iga t ion  t o  de termine   the   aeropropuls ive   charac te r i s t ics  of  nonaxisym- 
metric nozzles on an F-18 j e t  e f f e c t s  model has  been  conducted i n   t h e  Langley  16-Foot 
Transonic  Tunnel  and the AEDC l6 -~oo t   Supe r son ic  Wind Tunnel. The performance  of a 
two-dimensional  convergent-divergent  nozzle, a single  expansion ramp nozzle,  and a 
wedge nozzle w a s  compared w i t h   t h a t  of the baseline  axisymmetric  nozzle. Test data 
w e r e  obtained a t  static conditions  and a t  Mach numbers from  0.60 t o  2.20 a t  an  angle  
of a t t ack  of Oo.. Nozzle pressure ra t io  w a s  va r i ed  from je t -of f  t o  about 20.  

Afterbody  aeropropulsive  performance of the  F-18 with  the  two-dimensional 
convergent-divergent  nozzles (2-D C-Dl i s  equal t o  or higher  than the conf igura t ion  
with  axisymmetric  nozzles. A t  dry power, the  single  expansion ramp nozzle (SERN) and 
the  wedge nozzle   configurat ions ( a t  supersonic  speeds) also had higher  performance 
than  the F-18 with  axisymmetric  nozzles. The a f t e rbu rne r  power SERN configurat ion 
had  lower  performance  than  the  axisymmetric  nozzle  configuration  because of the  non- 
optimum alignment of t he   r e su l t an t   g ros s   t h rus t   vec to r  and  probable  adverse  flow 
e f f e c t s .  

INTRODUCTION 

S tudies  on twin-engine f i g h t e r   a i r p l a n e s   ( r e f s .  1 to  3) have ident i f ied   po ten-  
t i a l  b e n e f i t s   f o r   i n s t a l l a t i o n  of  nonaxisymmetric or two-dimensional (2-D) nozzles. 
This  nozzle  concept is  geometr ical ly  amenable to  improvements in   nozz le /a i r f rame 
i n t e g r a t i o n  t o  achieve   ins ta l led   d rag   reduct ion;   th rus t   vec tor ing   for  maneuver 
enhancement  and short-field  take-off  and  landing;  and  thrust   reversing  for  increased 
a g i l i t y ,  ground  handling,  and  reduced  landing  ground roll.  Development  of the  non- 
axisymmetric  nozzle  has  concentrated  primarily on three  nozzle   types:   the   s ingle  
expansion ramp ( r e f s .  4 t o  81, the  convergent-divergent  (refs.  4 and 61, and  the 
wedge ( r e f s .  4 and 9 to  11) .  

A s  p a r t  of a coordinated  technology  program  (ref. 2 ) ,  t h ree  nonaxisymmetric 
nozzles  and a baseline  axisymmetric  nozzle were t e s t e d  on a 0.10-scale F-18 prototype 
a i r p l a n e  model i n   t h e  Langley l6-~oot  Transonic  Tunnel.  These  nonaxisymmetric noz- 
z les   inc luded  a single  expansion ramp nozzle (SERN), a two-dimensional  convergent- 
d ivergent  (2-D C-Dl nozzle,  and a wedge nozzle. The F 1 8   a i r p l a n e  i s  a l ightweight ,  
highly  maneuverable,  twin-engine  fighter  with a r e l a t ive ly   c l ean   a f   t e rbody   fo r   nozz le  
i n s t a l l a t i o n .  N o  cont ro l   sur face   suppor t   s t ruc ture   ( such  as booms and   fa i r ings)  i s  
located adjacent  t o  or ahead of the nozzles ,   and  the  ver t ical  t a i l s  are loca ted  w e l l  
forward. of the  nozzle/airframe  juncture.  The r e s u l t s  of that  inves t iga t ion  have  been 
r epor t ed   i n   r e f e rence  12 and  summarized i n   r e f e r e n c e s  13 and  14. 

Th i s   pape r   p re sen t s   t he   r e su l t s  from a recent   inves t iga t ion   conducted   in   the  
16-Foot  Supersonic Wind Tunnel a t  the Arnold  Engineering  and Development Center   with 
t h e  same F-18 propuls ion model. The purpose of t he   p re sen t   i nves t iga t ion  w a s  to 
extend  the data base of the r e l a t i v e  performance  of  nonaxisymmetric t o  axisymmetric 
nozzles  t o  higher Mach numbers  (1.60,  2.00,  and  2.20).  Nozzle pressure  ratio w a s  
var ied  up t o  20 and  angle  of  at tack w a s  he ld   cons tan t  a t  Oo. Afterbody  drag data 
measured   dur ing   the   inves t iga t ion   for   re fe rence  12 but   no t   repor ted   there in  are 
presented  herein.  Some a f t e rbody   ae ropropu l s ive   cha rac t e r i s t i c s  a t  Mach numbers from 



SYMBOLS 

All forces  and moments, except   gross   thrust  F a re   r e f e renced   t o   t he   s t ab i l i t y  
a x i s  system. The moment reference  center  was l o c a t e d   a t   f u s e l a g e   s t a t i o n  116.47. 

9' 

nozz le   ex i t   a rea ,  cm 
i 

nozzle   throat   area,  cm 

af t -end  drag  coeff ic ient ,  - 

2 

A t  
2 

CD,af 
D 

903s 
mean geometric  chord, 35.12 cm 

aft-end  drag, N 

t h rus t   a long   s t ab i l i ' t y   ax i s ,  N 

g ross   th rus t ,  N 

free-  stream Mach number 

measured mass-flaw rate,  kg/sec 

Reynolds number per  meter 

ambient  pressure, Pa 

ave rage   j e t   t o t a l   p re s su re ,  Pa 

free-s t ream  total   pressure,  Pa 

f ree-s t ream  s ta t ic   p ressure ,  Pa 

free-stream dynamic pressure,, Pa 

gas   cons tan t   ( for  y = 1.39971,  287.3 J/kg-K 

Vert ical   d is tance from  nozzle SEW re fe rence   l i ne   t o   nozz le   f l ap   i n t e rna l  
surface,   posi t ive up ( f i g .  10 ) , cm 

wing reference  area,  3716.2 cmz 

je t  total   temperature ,  K 

f ree-stream  total   temperature,  K 



X ax ia l   d i s t ance   a long  SERN r e fe rence   l i ne  from nozzle  connect  station, 
p o s i t i v e  downstream ( f i g .  101, c m  

y1 'Y2 v e r t i c a l   d i s t a n c e s  from wedge c e n t e r   l i n e   ( f i g .  121,  cm 

Y ra t io  of spec i f i c   hea t s ,  1.3997 f o r  a i r  

6V 
geometr ic   thrust   vector   angle ,  deg 

Abbreviations: 

A/B af   t e rburn ing  

AEDC Arnold  Engineering  and Development Center 

ASME American Society of  Mechanical  Engineers 

axi  axisymmetric 

BL b u t t   l i n e ,  c m  

C-D convergent-divergent 

DPR des ign   p re s su re   r a t io  

FRP fuselage  reference  plane 

FS fuselage s ta t ion  

NPR nozzle   pressure ra t io  

SERN single  expansion ramp nozzle 

2 -D two-dimensional  (nonaxisymmetric) 

16FTT Langley l6 -~oo t   T ranson ic  Tunnel 

16s AEDC l6 -~oo t   Supe r son ic  Wind Tunnel 

APPARATUS AND PROCEDURE 

Wind Tunne 1 s 

This   inves t iga t ion  w a s  conducted i n   t h e  Langley lg-~oot   Transonic  Tunnel (16FTT) 
and  the AEDC l6-~oot   Supersonic  Wind Tunnel  (16s). The 16FTT is a s ingle-return,  
atmospheric  tunnel  with a s lot ted,   octagonal  test section  and  continuous a i r  
exchange. The  wind tunnel  has a var iab le   a i r speed  up to a Mach number of 1.30. 
Test-sect ion plenum suc t ion  i s  used  for  speeds  above a Mach number of  1.10. A com- 
plete desc r ip t ion  of t h i s   f a c i l i t y  and  operat ing  character is t ics   can  be  found  in  
reference 15. 

The  16s is a s ingle-return  var iable-pressure  tunnel   with a square tes t  sect ion.  
The contour of the  .nozzle  sidewalls are remotely  adjustable  and  can  provide a Mach 
number range  from 1.50 to  4.75. The maximum Reynolds number i n   t h i s   f a c i l i t y   f o r  
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t h i s  i nves t iga t ion  w a s  restricted because  one of the main drive  motors failed. A 
complete  description of t h i s   f a c i l i t y  and   opera t ing   charac te r i s t ics   can   be   found  in  
re ference  16. 

Model and  Support  System 

A 0.10-scale F-18 a f t e rbody   j e t - e f f ec t s  model w a s  employed for t h i s  inves t iga-  
t i o n  and i s  sham i n  the sketch of f i g u r e  1 and  the  photographs of f i g u r e  2. The 
F-18 a i rp l ane  i s  a l ightweight,   highly  maneuverable  f ighter  with a r e l a t i v e l y   c l e a n  
a f t e rbody   fo r   nozz le   i n s t a l l a t ion .  As shown i n   f i g u r e s  1 and 2 ,  the   conf igura t ion  i s  
charac te r ized  by nose strakes, a s t r a i g h t   w i n g , . i n l e t  diverter bleed slots through 
t h e  wing, tw in   ve r t i ca l  tails loca ted  w e l l  forward on the  af terbody,   and  c losely 
spaced twin  engines. The 0.10-scale model reproduced F-18 a i rp l ane   l i nes   excep t  f o r  
the   f a i r ed -ove r   i n l e t s   ( r equ i r ed   fo r  power model tests) loca ted  on the forebody w e l l  
forward of the af terbody  and  the wind a l t e r a t i o n s   r e q u i r e d  for  the  model support  
system. The term afterbody,  as used i n  t h i s  paper, refers t o   t h e  metric po r t ion  of 
the  model on  which fo rces  and moments are measured. The metric break, or seal sta- 
t ion,   begins  a t  FS 144.78.  The af terbody  includes t h e  a f t  fuselage,   nozzles   ( includ-  
i n g   i n t e r n a l  th rus t  hardware),  and empennage surfaces .  The model forebody  and  wing 
were nonmetric. A 0.064-cm gap i n   t h e   e x t e r n a l .   s k i n  a t  the metr ic-break  s ta t ion 
prevented  fouling  between  the  nonmetric  forebody/wing  and metric afterbody. A f l e x i -  
ble rubber strip located in  the  metr ic-break gap w a s  used as  a seal t o  prevent   in te r -  
na l  flow i n  the  model. The metric afterbody was attached to  a six-component s t r a i n -  
gage  balance which was grounded to  the  nonmetric  forebody. 

16FTT support  system.- As shown i n   f i g u r e s  1 and 2, the  model w a s  supported a t  
t h e  wing tips in   t he   t unne l .  The model FRP w a s  loca ted  7.13 cm below the  tunnel  
cen te r   l i ne .  The ou te r  wing panels ,  from  65 percent  of the semispan to  the t ip ,  were 
modif ied  f rom  airplane  l ines  to  accommodate the  wing-tip support system  and a i r  sup- 
p ly  system. The t w o  wing-tip booms were a t tached  to  the  normal  tunnel  support  system 
with  V-struts  as shown i n   f i g u r e  2 (a ) .  High-pressure a i r  and   ins t rumenta t ion   l ines  
were routed through  the V - s t r u t s  and  .wing-tip booms en te r ing   t he  model fuse lage  
through  gun-dril led  passages  in  both wings. 

16s  support  system.- A st ronger   wing-t ip  support system  than  the  one  used i n   t h e  
16FTT was used i n  the 16s  and i s  shown i n  the photograph of f i g u r e  2 (b )  . The change 
of  support  systems w a s  necess i ta ted  by u n s t a r t  loads associated with  the  16s. The 
booms had a semispan  of  47.41 cm and were supported i n   t h e  16s   w i th   s t r a igh t   s t ru t s .  

Propulsion  Simulation System 

External  high-pressure a i r  systems a t  b o t h   f a c i l i t i e s   p r o v i d e d  a continuous f l o w  
of clean,  dry a i r  to simulate j e t  exhaust flow. Je t  stagnation  temperature w a s  rnain- 
ta ined  a t  294 K i n  16FTT and 310 K i n  16s. This  high-pressure a i r  i s  t r ans fe r r ed  
f r o m  a common high-pressure plenum i n   t h e  model c e n t e r   s e c t i o n   i n t o   t h e  metric por- 
t i o n  of the model by means of two i n t e r n a l  flow t r a n s f e r  assemblies. A sketch 
showing details of  one  of these  assemblies  is  p r e s e n t e d   i n   f i g u r e  3. These flow 
t r ans fe r   dev ices  have  been  used in   s eve ra l   p rev ious   i nves t iga t ions  (refs. 4, 10, 
and  17).   Flexible metal bellows are l o c a t e d   i n  each end of the  flow t r a n s f e r  assem- 
b l i e s  and act  t o  minimize p re s su r i za t ion  tares and  provide a t a re - f r ee  assembly. 
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Flow t rans i t ion   and   ins t rumenta t ion   sec t ions   ( f ig .   3 )  , including  17.9-percent- 
open  choke plates, w e r e  a t tached  to  each  of  the flow t r a n s f e r  assemblies and termi- 
nated a t  FS 169.32,  which w a s  the common connect   s ta t ion   for  a l l  nozzles. 

Nozzle  Designs 

The base l ine  F-18 axisymmetric  nozzle  and  three  nonaxisymmetric or 2-D nozzles  
w e r e  t e s t ed .  The nonaxisymmetr ic   nozzles   represent   three  generical ly   different  
types:  (1 ) two-dimensional  convergent-divergent (2-D C-D) , ( 2 )  single  expansion ramp 
nozzle (SERN),  and (3 )  wedge. 

Two power s e t t i n g s  w e r e  inves t iga ted   for   each   nozz le   ty  e and  represented a dry 
or cruise power s e t t i n g   w i t h  a model t h roa t   a r ea  of  16.13 cm' and  an  afterburning 
(A/B)  power s e t t i n g   w i t h  a t h r o a t  area of  25.81 c m  . The th ree  nonaxisymmetric noz- 
z l e s  had an  exhaust-duct aspect ra t io  of 1.00 upstream of the nozzle  throat.  The 
SERN and  the 2-D C-D nozzle had t h r o a t  aspect ratios ( r a t io  of  throat   width to  
he ight )  of 3.71 and 2..32 for  dry  and A/B power se t t i ngs ,   r e spec t ive ly .  The wedge 
nozzle had an  exhaust-duct aspect r a t i o   ( i n c l u d e s  wedge thickness)  a t  t h e   t h r o a t  of 
1.00 fo r   bo th  power s e t t i n g s .  Based  on a n   e f f e c t i v e   t h r o a t   h e i g h t  (sum of  upper  and 
lower t h r o a t   h e i g h t s ) ,   t h e  wedge nozzle  had a t h r o a t   a s p e c t  ra t io  of 3.26 a t  dry 
power s e t t i n g  and 2.03 a t  A/B power se t t i ng .   Thrus t   vec to r ing  w a s  i n v e s t i g a t e d   f o r  
a l l  2-D nozzle   types  and  thrust   revers ing w a s  i n v e s t i g a t e d   f o r   t h e  2-D C-D and wedge 
nozz les   on ly ;   these   resu l t s  are repor ted   in   re fe rence  12 a t  Mach numbers up to  1.20. 
Nozzle   conf igura t ions   t es ted   dur ing   th i s   inves t iga t ion  are summarized i n   t a b l e  I f o r  
both  wind-tunnel   faci l i t ies .  

2 

Baseline  axisymmetric  nozzle.- The basel ine  axisymmetr ic   nozzles   instal led  on,  
the  F-18 model are shown in  the  photographs of f i g u r e  4. A sketch of the  nozzle  
showing both  the  dry  and A/B power conf igura t ions  i s  given i n   f i g u r e  5. This  axisym- 
metric  exhaust  nozzle  represents a hinged-f  lap,  variable-position,  convergent- 
divergent  nozzle.  Both the convergent  and  divergent  portions of the  nozzle are coni- 
cal. On full-scale  hardware,  a s ingle   actuat ion  system  controls   the  nozzle   throat  
and e x i t   a r e a .  The n o z z l e   e x i t  area A, i s  set by an   ad jus tab le   l inkage  rod and 
becomes a unique  function of t h roa t   a r ea .  Thus, f o r  a set linkage  rod  length/hinge 
locat ion,   the   nozzle   expansion  ra t io  Ae/At i s  determined by At. Nozzle  expansion 
ratios of  1.28  and  1.56 that  represented  dry  and A/B power se t t i ngs ,   r e spec t ive ly ,  
w e r e  used. 

Two-dimensional  convergent-divergent  nozzle.- The 2-D C-D nozz le s   i n s t a l l ed  on 
the  F-18 model are shown in  the  photographs of f i g u r e s  6 and  7.  Sketches of t he  
nozzle   represent ing  configurat ions  with  both power s e t t i n g s  are shown i n   f i g u r e  8. 

The 2-D C-D nozzle i s  a variable-area  internal-expansion  exhaust  system  which 
has  a three-flap  design  between  f ixed  sidewalls.  The 2-D convergent   f lap  controls  
nozzle   throat  area. The 2-D var iab le-pos i t ion   d ivergent   f lap   and   ex terna l   boa t ta i l  
f l a p  assembly controls   both  nozzle   exi t   area  and  thrust   vector   angle   independent ly  of 
t h r o a t  area. The model w a s  t e s t ed   w i th  a nozzle  expansion  ratio Ae/At of  1.15 
and 1.65 f o r   b o t h  power se t t i ngs .  

Single  expansion ramp nozzles.- The SERN i n s t a l l e d  on t h e  F-18 model i s  shown i n  
the  photograph of f i g u r e  9. Sketches showing the geometry  of the  nozzle  with  both 
power s e t t i n g s  are p r e s e n t e d   i n   f i g u r e  10. 
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The S E W  i s  a 2-D, variable-area,   in ternal /external   expansion  exhaust  system. 
Basic components c o n s i s t  of a t r a n s i t i o n   s e c t i o n  from a round  cross   sect ion a t  the 
tail-pipe connect  f lange to  a 2-D cross sec t ion  a t  the   nozz le   th roa t ,  a 2-D variable-  
geometry  convergent-divergent  upper f lap assembly  used t o  vary power s e t t i n g   ( t h r o a t  
area), a 2-D var i ab le   ven t r a l  f lap used t o  vary  nozzle  expansion ra t io  Ae/At, and a 
2-D external  expansion ramp which  can  be  varied for  vec tor ing   appl ica t ions .   S ince  
t h e   t h r o a t  i s  forward of the v e n t r a l  flap, the  power s e t t i n g  (At)  i s  independent of 
the   ven t r a l  flap p o s i t i o n  or expansion ra t io  Ae/At. The model was tested with noz- 
z le   expans ion   ra t ios  of 1.06 and 1.15 f o r  the dry power s e t t i n g  and  with  nozzle 
expansion ratios of 1 .19 and 1.36 for  the.  A/B power s e t t i n g .  Although f i g u r e  10 
shows vec to r ing   conf igu ra t ions   fo r   t he  SERN, no v e c t o r i n g   r e s u l t s  are presented 
herein  but  can  be  found  in  reference 12. 

The SERN shape  blends well w i t h  a i r f rame  contours .   In   addi t ion,   dur ing  ful l -  
scale  nozzle  design,  sidewall   thickness was minimized by loca t ing   ac tua t ion  hardware 
i n  the ava i l ab le  area on top OP the  exhaust  duct.  The r e s u l t  is  a nozz le   i n s t a l l a -  
t i o n  tha t  minimizes  drag-producing  base  regions. 

Wedge nozzle.- A photograph of the  wedge n o z z l e   i n s t a l l e d  on the F-18 model i s  
presented as f i g u r e  1 1 ,  and  sketches of the  nozzle  showing representa t ions  of both 
power s e t t i n g s  and a l l  nozzle  expansion ratios are given i n  figure 12. The wedge 
nozzle i s  a 2-D, variable-area,   internal/external  expansion  exhaust  system. The 
nozzle  has a co l l aps ing  wedge centerbody  and a f ixed  external   nozzle  f lap or boat- 
t a i l .  The wedge geometry for  a f l igh t   nozz le  can' be  var ied by unique  scissor-type 
l inkages  and  hinges  that  allow nozzle  exit   area  and  expansion ratio t o  be  varied 
independently of the t h r o a t  area. For A/B power, the wedge is co l l apsed   t o   ob ta in  
t h e  desired t h r o a t  area. Nozzle  expansion r a t i o s  of 1.10,   1 .30,  and 1.50 were tested 
with  the  dry power s e t t i n g ,  and  nozzle  expansion  ratios of 1.20 and 1.40 were tested 
wi th   the  A/B power se t t i ng .  

Nozzle I n s t a l l a t i o n s  

Each nonaxisymmetric  nozzle type was i n t e g r a t e d   i n t o   t h e  F-18 model so t h a t  
r e a l i s t i c   e x t e r n a l   l i n e s  were es tab l i shed ,  which were expected  to  minimize  the  poten- 
t i a l  €or ex te rna l  flow separat ion  in   the  t ransonic   speed  range.   Internal   c learance 
between the  engine  and  airframe  skin needed f o r   s t r u c t u r a l  frames, engine   ins ta l la -  
t i o n  and  removal,  engine-bay  cooling a i r ,  nozzle  actuation  equipment,   and  other 
requi red   accessor ies   wi th in   the   a i rp lane   a f te rbody were c o n s i d e r e d   i n   e s t a b l i s h i n g  
these realist ic ex te rna l   l i nes .  

For i n s t a l l a t i o n  of the  nonaxisymmetric  nozzles,  modifications were made t o  the  
model a f t e rbody   s t a r t i ng  a t  about FS 152.40. T h i s  modif icat ion  consis ted of f i l l i n g  
i n  the   engine /nozz le   in te r fa i r ing   tha t  began a t  t h i s  fuse l age   s t a t ion  and  adding 
f i l l e r  a t  the   fuse lage   corners   for  smooth t r a n s i t i o n  to  the   rec tangular  nonaxisymmet- 
r i c  nozzles. A sketch showing both a p r o f i l e  view of a l l  nozzles   and  typical  after- 
body c ross   s ec t ions  i s  p resen ted   i n   f i gu re  13 to  i l l u s t r a t e   a f t e rbody   mod i f i ca t ion .  
A l l  nozzles were a t t a c h e d   t o   t h e  model a t  FS 169.32. 

Each afterbody/nozzle  combination was then tested in   the   Nor throp   d iagnos t ic  
water tunne l   i n   o rde r   t o   de t e rmine  and f i x   r e g i o n s  of ex te rna l  separated flow. The 
configurat ion  with the baseline  axisymmetric  nozzles w a s  used as a ca l ib ra t ion   s t an -  
dard t o  ad jus t   t es t - sec t ion   ve loc i ty .   Tes t - sec t ion   ve loc i ty  was ad jus t ed   t o   g ive  the 
same nozzle flow separa t ion  a t  the  angle  of attack known from tests previously con- 
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duc ted   i n   t r anson ic  wind tunnels.  A fu r the r   d i scuss ion  of the  rationale f o r  operat- 
ing   t h i s   t unne l   can   be   found   i n   r e f e rence  18. 

I n i t i a l l y ,   t h e   e x i t  of the  2-D C-D nozzle w a s  f i xed  a t  the  same f u s e l a g e   s t a t i o n  
as the  axisymmetric  nozzle. However, tests conducted i n  the Northrop water tunnel  
i nd ica t ed  a problem of  flow  separation a t  about FS 169.32 because of l oca l ly   h ighe r  
afterbody  slopes.   This  f low  separation w a s  e l iminated i n  the  water tunnel tests by 
ex tending   the   nozz le   ex i t  2.94 c m  a f t .  

Instrumentat ion 

External   af terbody  aerodynamic  and  internal   nozzle   thrust   forces   and moments 
were measured  with  an  internal six-component strain-gage  balance. Ten pressure  ori- 
f i c e s  i n  the  metric-break gap a t  FS 144.78 were used to  measure p r e s s u r e s   f o r  tare 
co r rec t ions .   In t e rna l   cav i ty   p re s su re ,  also used   for   p ressure-area   force  tares, w a s  
measured a t  10 loca t ions   i n   t he   a f t e rbody   cav i ty .  The angle of a t t a c k  of the  nonmet- 
r i c  wing  and  forebody w a s  determined  from a c a l i b r a t e d   a t t i t u d e   i n d i c a t o r   l o c a t e d   i n  
the model nose. 

Mass-flow rate i n  each  nozzle w a s  determined  from total   pressure  and  temperature  
measurements i n   t h e  flow t r ans fe r   a s sembl i e s   ( f i g .  3) and by constants  determined 
from ca l ib ra t ions   w i th  ASME s tandard   nozz les   in   the  16FTT. To ta l  mass-flow rate 
(both  nozzles) w a s  measured by a ven tu r i   ex t e rna l   t o   t he   t unne l   i n   16s .  Flow condi- 
t ions   in   each   nozz le  were determined  from two total-pressure  rakes  and  one total- 
temperature probe located i n   t h e   i n s t r u m e n t a t i o n   s e c t i o n   a f t  of t h e   t r a n s i t i o n  sec- 
t i o n  and  choke plate ( f i g .   3 )  . Each rake,  one  from  the  top  and  one from the  side of 
both  instrumentat ion  sect ions,   contained  three  total-pressure  probes.  

Data Reduction 

A l l  data fo r   bo th   t he  model and  the  wind-tunnel f a c i l i t i e s  were recorded  simul- 
taneously on magnetic tape. The recorded da ta  were used t o  compute s tandard   force  
and moment coe f f i c i en t s   w i th  wing area and mean geometric  chord  being  used  for  refer-  
e n c e  area and  length,   respect ively.  

Because  the  center   l ine of the  balance w a s  loca ted  below the   f low  t ransfer  
assembly  (bellows)  center  l ine,  a fo rce  and moment i n t e r a c t i o n  ( tare)  between  the 
bellows  and  balance  existed.   In  addition,  al though  the  bellows were designed t o  
minimize momentum and  pressur iza t ion  tares, small bellows tares still ex i s t ed   w i th  

- t he  j e t  on. These tares r e s u l t  from mall  p res su re   d i f f e rences  between the  ends of 
the  bellows when i n t e r n a l   v e l o c i t i e s  are high  and also from small d i f f e r e n c e s   i n   t h e  
forward  and a f t   b e l l o w s   s p r i n g   c o n s t a n t s  when the  bellows are pressurized.  The 
bellows/balance  interaction tares were determined by s ing le  and combined c a l i b r a t i o n  
loadings  on  the  balance,  with  and  without  the j e t  opera t ing   wi th   the  ASME c a l i b r a t i o n  
nozz le s   i n s t a l l ed ,  These tare forces  and moments were then removed from the  appro- 
priate balance component data .  A more de t a i l ed   desc r ip t ion  of this   procedure  can be 
found i n  re ferences  4 and 10.  These ca l ib ra t ion   l oad ings  were conducted a t  101.4 kPa 
(a tmospher ic   p ressure)   in   the  16FTT and a t  24 kPa i n   t h e   1 6 s .  The c a l i b r a t i o n s   i n  
16s were done a t  reduced  pressure  in   order  t o  approximate wind-on condi t ions  more 
c lose ly .   In   addi t ion ,   ba lance   cor rec t ions  were a l s o  made t o  account  for  metric-break 
gap and in t e rna l   cav i ty   p re s su re / a rea  tares. 
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Angle  of attack a, which is  the  angle  between the afterbody center l i n e  and  the 
r e l a t i v e  wind, w a s  determined by applying  def lect ion terms caused by model and bal- 
ance  bending  under  aerodynamic  load  and a flow angu la r i ty  term to  the  angle  measured 
by   t he   a t t i t ude   i nd ica to r .  A flow  angularity  adjustment of 0.lo w a s  applied,  which 
is  the average  angle  measured i n  the 16FTT. No flow angular i ty   adjustment  was made 
f o r  the 16s. 

Since  the choke plate and  nozzle  flow  instrumentation were downstream  of the 
round-to-rectangular   duct   t ransi t ion  sect ion  ( f ig .  31, nozzle  performance  parameters 
were independent of duc t   t r ans i t i on   e f f ec t s .   To ta l -p re s su re   p ro f i l e s  were determined 
f o r   t h e  ASME cal ibrat ion  nozzles   and  €or   the 2-D C-D nozzle a t  A/B power with  the 
d ive rgen t   f l aps  removed. Thus, total-pressure  measurements were taken a t  t h e   t h r o a t  
of a convergent 2-D nozzle. Each in te rna l   to ta l -pressure   p robe  was then  corrected t o  
the   in tegra ted   va lue  of j e t  to t a l   p re s su re  a t  the  nozzle   throat .  

Thrust-removed c o e f f i c i e n t s  are obtained by determining the components  of t h r u s t  
i n   t h e   a x i a l   a n d  normal d i r ec t ion  and  subtract ing  these  values  from the measured 
af terbody  forces.   These  thrust  components a t  forward speeds are determined from ' 

measured s ta t ic  data and are a funct ion of the  free-stream static and dynamic pres- 
sures .  As such,  thrust-removed  coefficients a t  nozz le   p ressure   ra t ios   g rea te r   than  
t h a t  measured a t  static condi t ions are ca lcu la ted  by ex t rapola t ing   the  static data. 

T e s t s  

Data were o b t a i n e d   i n   t h e  16FTT a t  Mach numbers  from 0.60 t o  1.20 and i n  the 16s 
a t  Mach numbers  from 1.60 t o  2.20. Nozzle   pressure  ra t io  w a s  var ied  up to   about  20 
depending upon t h e   f a c i l i t y .  Angle  of attack and hor izonta l - ta i l   inc idence  were both 
Oo. Nominal values  of free-stream test cond i t ions   fo r   each   f ac i l i t y  are presented i n  
the  fol lowing  table:  

M NRe K 
p, 

Pt& F a c i l i t y  kPa kPa 
q, T t  ,-, 

0.60 10.43 x 10 320 20.6 81.8 101.4 16FTT 6 

.80 68 -4 30.7 

13.20 340 1.30  37.7  45.6 
13.12 338 1.20  43.0  43.4 
12.63 330 .90 61.7 35 .O 
12.30 325 

1.60 ' 16s 36.5 8.6 15.4 322 4.66 x 10 
2.00  42.6  5.5  4.72 
2.20  48.3 4.5 15.3 

~~ 
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PRESENTATION O F  RESULTS 

The r e s u l t s  of t h i s   i n v e s t i g a t i o n  are p r e s e n t e d   i n   p l o t t e d  ra t io  and c o e f f i c i e n t  
form in   t he   fo l lowing   f i gu res :  

Figure 

Stat ic  nozzle  performance ..................................................... 14 
Af terbody  performance ( t h r u s t  minus  drag) : 

Axisymmetric  nozzle ......................................................... 15 
2-D C-D nozzle .............................................................. 16 

Wedge nozzle ................................................................ 18 

Axisymmetric  nozzle ......................................................... 19 
2-D C-D nozzle ............................................................... 20 

Wedge nozzle ................................................................ 22 

Subsonic  afterbody  aeropropulsive  performance  for  dry power ................. 23 
Supersonic  afterbody  aeropropulsive  performance  for A / B  power ............... 24 
Subsonic  afterbody  drag  for  dry power ....................................... 25  
Supersonic  afterbody  drag  for A / B  power ..................................... 26 

NPR schedule .................................................................. 27 
Nozzle  comparisons a t  schedule NPR: 

Afterbody  aeropropulsive  performance  for  dry power .......................... 28 
Afterbody  aeropropulsive  performance  for A / B  power .......................... 29 
Incremental  afterbody  aeropropulsive  performance ............................ 30 
Afterbody  drag  for  dry  and A/B power ........................................ 31 
Incremental   afterbody  drag .................................................. 32 

SERN ........................................................................ I7 

Af terbody  drag: 

SERN ........................................................................ 21 

Nozzle  comparisons: 

RESULTS AND DISCUSSION 

S t a t i c  Performance 

A comparison of the  s ta t ic  performance of the  nozzles  i s  p r e s e n t e d   i n   f i g u r e  14 
for   both  dry  and A/B power s e t t i n g s  a t  selected  expansion  ra t ios .  The performance 
l e v e l s  shown a re   t yp ica l   fo r   t hese   t ype   nozz le s   ( r e f s .  4 ,   6 ,  and 10) .  Nozzle types 
with a l l  internal   exhaust   f low  expansion - namely, the  axisymmetric  and  the 2-D C-D 
nozzles  - are charac te r ized  by a single  performance  peak  which  occurs  near  the  nozzle 
p r e s s u r e   r a t i o   r e q u i r e d   f o r   f u l l y  expanded exhaust  flow. (See DPR i n  table I.) Peak 
internal   performance  can  be  shif ted  to   higher   nozzle   pressure  ra t ios  by inc reas ing  
nozzle   expansion  ra t io  Ae/At. (See  ref.  1 2 . )  Nozzle  types  with  both  internal  and 
external  exhaust  f low  expansion - namely, the  SERN and  the wedge nozzle - are charac- 
t e r i z e d  by two performance  peaks. The nozzle  pressure ratio a t  which  each  of  these 
peaks  occurs i s  a func t ion  of the  nozzle  expansion  ratio a t  t h e   e x i t   ( v a l u e s   g i v e n   i n  
t h i s  paper) and also of the  expansion r a t i o   a t  the  end of t h e   e x t e r n a l   f l a p  or wedge 
expansion  surface.   (See  ref.  6 . )  Internal  performance of nozzles   wi th   ex te rna l  
expansion  surfaces w i l l  b e   s e n s i t i v e  t o  ex terna l   f low  e f fec ts   dur ing   forward   f l igh t .  

S ta t ic  internal  performance of the 2-D C-D nozzle  throughout  the  range of nozzle 
pressure   ra t io   and   of   the  SERN a t  pt, j/pa > 6 i s  competitive  with  the  axisymmetric 
convergent-divergent  nozzle a t  dry power s e t t i n g .  (See f i g .  14. ) Performance  of t he  
wedge nozzle  and  of  the SERN a t  pt, j/pa < 6 genera l ly  is  2 t o  4 percent  below the  
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axisymmetric  nozzle a t  dry power se t t i ng .  Both  the S E W  and  the wedge nozzle, how- 
ever,   have  external  expansion  surfaces;   thus,   internal  performance w i l l  be altered by 
e x t e r n a l  flow e f f e c t s  a t  forward speeds. A t  A/B paver, a l l  three  nonaxisymmetric 
nozzles have higher  performance  than  the  axisymmetric  nozzle,  with  the 2-D C-D nozzle 
exhibi t ing  the  highest   performance.  However, the  axisymmetric  nozzle  expansion ra t io  
a t  A/B power i s  much higher  than the nozzle  expansion ratios for  the  nonaxisymmetric 
nozzles. A lower expansion ra t io  €or the  axisymmetric  nozzle  should  produce  internal 
performance  levels similar to  tha t   ob ta ined   fo r   t he  2-D C-D nozzle. 

Basic Aeropropulsive  Performance 

The v a r i a t i o n  of the aeropropulsive  performance parameter (F - D)/Fi wi th  
nozzle   pressure ra t io  
and  expansion ra t io  Ae?l;j a t  Mach numbers  from 0.60 to  2.20. 

/p, i s  p r e s e n t e d   i n   f i g u r e s  15 t o  18 f o r  each nozzle  type 

As expected,  because of increased drag, the  aeropropulsive  performance of a l l  
configurat ions  decreased  with  increasing Mach number. Consis tent   t rends  with  nozzle  
expansion  ra t io  are not   evident  from the  data obtained  with SERN and wedge nozzle 
i n s t a l l a t i o n s .  Both  these  nozzles have external  expansion  surfaces  which would be 
a f f ec t ed  by ex te rna l  flow e f f e c t s  and,  thus,  have  internal  performance  which  depends 
on Mach number, angle  of attack, nozzle   pressure  ra t io ,   and  configurat ion  external  
geometry. On the o the r  hand, the 2-D C-D nozzle, which has no external  expansion 
surfaces,  has  internal  performance  independent of ex te rna l  flow e f f e c t s  as  long as 
the  nozzle  exhaust  flow does not  separate from the  nozzle   divergent  flaps. Thus, t he  
v a r i a t i o n  of wind-on 2-D C-D nozzle  performance w i t h  nozzle  expansion  ratio shown i n  
f i g u r e  16 follows t rends   ind ica ted  a t  s ta t ic  condi t ions.  (See ref. 12.) That is, 
low nozzle  expansion ratios generally  produce  higher  performance a t  law nozzle pres- 
sure  ratios, and  high  nozzle  expansion ra t ios  generally  produce  higher  performance a t  
high  nozzle  pressure ratios. S i n c e   a c t u a l   f l i g h t  hardware would be  continuously 
variable  within  mechanical  constraints,   nozzle  expansion ra t io  would be programmed, 
as c lose ly  as poss ib l e ,   fo r  optimum performance  over  the  operating  range of nozzle 
p re s su re   r a t io .  

Typical  comparisons.of F-18 aeropropulsive  performance  between  the  various noz- 
z l e s   a r e  shown a t  subsonic  and  supersonic  speeds i n   f i g u r e s  23 and 24, respec t ive ly .  
A summary of t h i s  performance a t  the  scheduled NPR of f i g u r e  27 fo r   t he   va r ious  
nozz le   i n s t a l l a t ions  is  p r e s e n t e d   i n   f i g u r e s  28 and 29. Nozzle  expansion ratios are 
a l s o   g i v e n   i n   f i g u r e s  28 and 29. 

The v a r i a t i o n  of nozzle  pressure ratio with Mach number shown i n   f i g u r e  27 i s  
typical f o r   t h e  F-18 a i r p l a n e   f o r  both,  nozzle power s e t t i n g s .  Although  discussion of 
the  r e s u l t s  a t  th i s   pa r t i cu la r   s chedu le  of nozzle   pressure ra t io  would genera l ly   be  
appl icable   for   o ther   schedules ,   the   re la t ive   d i f fe rence  between  comparisons may vary. 

An incremental  afterbody  performance  parameter is  summarized i n  figure 30 for  
both  nozzle power se t t ings   over  the  range of Mach numbers. T h i s  incremental  after- 
body performance i s  the   d i f fe rence  between  performance f o r  the F-18 with nonaxisym- 
metric nozzles   and  that   for  the baseline  axisymmetric  nozzles. A posi t ive  increment  
ind ica tes   h igher  perPormance f o r   t h e  F-18 with  nonaxisymmetric  nozzles. 
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Dry Power Performance 

2-D C-D nozzle.-  Afterbody  aeropropulsive  performance i s  equal t o  or h i g h e r   f o r  
t h e  F-18 wi th   the  2-D C-D nozzle (Ae/At = 1.65)   than  for   the  configurat ion  with  the 
axisymmetric  nozzle (Ae/At = 1.28).  This  higher  performance  occurs  over  the NPR 
range  ( f ig .  23) and  over  the Mach number range  ( f ig .  3 0 ) .  Subsonic  and  transonic 
performance  character is t ics  are presented   for   the  2-D C-D nozzle  with  the 1.65  expan- 
s ion   r a t io   because   t h i s  w a s  the  nozzle  configuration tested a t  the  16s. However, the  
F-18 with  the 2-D C-D nozzle a t  an  expansion ra t io  of  1.15 also  has   higher   perfor-  
mance than  the  axisymmetric  nozzle  with  an  expansion ra t io  of  1.28 over  the NPR range 
a t  Mach numbers  from  0.60 t o  1.20. (Compare f i g s .  15 and 16 or see re f s .  12 and  13.) 

The performance  of  the  dry power 2-D C-D nozzle a t  M < 1.2  can  be  estimated 
f o r   t h e  same expansion ra t io  as the axisymmetric  nozzle by u s i n g   t h e   r e s u l t s  of f ig-  
u re  16. This  would r e s u l t   i n   a n   i n c r e a s e  of A ( F  - D)/Fi of about 0.005 a t  
M = 0.60 and a decrease of t h i s  parameter OP 0.004  and  0.008 a t  'M = 0.90 and  1.20. 
A t  M = 1.60 t o  2.20, the  axisymmetric  nozzle  has  larger  underexpansion  losses  than 
the  2-D C-D nozzle  because  the  axisymmetric  nozzle i s  opera t ing  a t  too low an expan- 
s ion ra t io  fo r   t he   ope ra t ing  NPR associated  with  these  higher  Mach numbers. 

SERN .- Af terbody  aeropropulsive  performance a t  M = 0.90 of the  F- 18 with  the 
SERN (Ae/At = 1.15) a t  the  dry power s e t t i n g   ( f i g .  231,  i s  near ly   the same as wi th  
the  axisymmetric  nozzle  for NPR < 6 ;   fo r  NPR > 6, SERN performance is  s l i g h t l y  
higher  than  the  axisymmetric  nozzle.  Although  the SERN s ta t ic  performance  (fig.  14) 
a t  NPR = 4 i s  about 4 percent  less than   e i ther   the   ax isymmetr ic   o r  2-D C-D nozzles,  
favorable   ex te rna l  flow recompression  effects on the  f ree   expansion  surface are 
enough to make i t s  performance a t  forward  speeds  comparable. A t  NPR > 7 ,  the  SERN 
has  the  highest  s ta t ic  performance of the  nozzles   tes ted  ( f ig .   14)  s i n c e  i n t e r n a l  
performance a t  the  higher  NPR is  pr imari ly   inf luenced by the  external   expansion 
ratio.  Consequently, a t   t h e  scheduled NPR, the  dry power SERN configurat ion  has  
higher  performance  over  the Mach number range  ( f ig .  30)  than  the  axisymmetric  nozzle 
even  though its in t e rna l   expans ion   r a t io  is  less than  the  axisymmetric  nozzle.  These 
r e s u l t s   i l l u s t r a t e   t h a t   c o m p a r i s o n s  of  performance  between i n t e r n a l  and i n t e r n a l /  
external  expansion  nozzles  cannot  necessarily  be made for   nozz les  a t  the  same expan- 
s i o n   r a t i o .  I t  may a l so   be   poss ib le   to   opera te  a nozzle of the  SERN type a t  a f ixed  
in te rna l   expans ion   ra t io   wi th  a resul t ing  savings  in   both  nozzle   weight   and complex- 
i t y  by not  having to  ac tua te   t he  lower nozz le   vent ra l   f lap .  

Wedge nozzle.- A t  the  scheduled NPR, the  dry power wedge nozzle  has  higher  per- 
formance  than  the  axisymmetric or o the r  nonaxisymmetric  nozzles a t  supersonic Mach 
numbers ( f i g .  30). A s  wi th   the SERN, external  f low  recompression  effects on wedge 
are bene f i c i a l  enough t o  overcome the  lower  s ta t ic   performance  ( f ig .   14)  of t h i s  
nozzle. 

Afterburner  Performance 

2-D C-D nozzle.- A s  shown previous ly   for   d ry  power se t t ings ,   aeropropuls ive  
performance a t  A/B pawer f o r   t h e  F-18 with  the 2-D C-D nozzle (Ae/At = 1.65) i s  also 
equal   to   or   higher   than  the  configurat ion  with  the  axisymmetr ic   nozzle   ( f ig .   24) .  
Figure 30 i n d i c a t e s   t h a t   t h e  2-D C-D nozzle   configurat ion  has   the  highest  A/B power 
performance of all the   conf igura t ions   over   the   en t i re  Mach number range. A t  
M = 0.60 t o  1.20,  th is   higher   performance  can be a t t r i b u t e d  t o  t h e   f a c t   t h a t   t h i s  
nozzle is  a t  a lower expansion ra t io  (1.15 compared with  1.56)  than  the  axisymmetric 
nozzles  (1.65  expansion ratio n o t  tested i n  16FTT). A t  M = 1.60 t o  2.20, the e f f e c t  
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of   the small d i f f e rence   i n   expans ion  ra t io  (1.65  compared  with  1.56)  should  have 
l i t t l e  e f f e c t  on  performance. 

BERN.- The configurat ion  with  the A/B power SERN general ly   has  lower performance 
than   tha t  w i t h  the axisymmetric  nozzle  over  ei ther  the NPR range  (fig.   24) or Mach 
number range  ( f ig .  30). This  lower performance may r e s u l t  from two factors. F i r s t ,  
cont ra ry   to   d ry  power r e s u l t s ,   t h e r e  may be an   adverse   ins tead  of bene€ ic i a l   e f f ec t  
of t h e   e x t e r n a l  flow in t e rac t ing   w i th   t he   ex te rna l   expans ion  ramp. In   add i t ion ,  
t he re  i s  a t h r u s t  loss due t o  a nonoptimum a l ignment   o f   the   resu l tan t   g ross   th rus t  
vector r e l a t i v e  t o  the   a i rp l ane  body ax is   €or   the   nozz le   in   the   nonvec tored  mode. 
Reference 12 i n d i c a t e s   t h a t   t h e   r e s u l t a n t   t h r u s t   a n g l e   f o r   t h e  A/B power SERN varies 
l i n e a r l y  from about Oo a t  NPR = 4 t o  about 6.5O a t  NPR = 6. For  the  dry power 
nozz le ,   th i s   angle   var ies  from -4O a t  NPR = 4 t o  4O a t  NPR = 10. References 6 
t o  8 i n d i c a t e   t h a t   t h i s  flow a n g l e   u s u a l l y   i n c r e a s e s   i n  a l i nea r   f a sh ion  from  about 
NPR = 4 t o  20. For  the SERN a t  A/B power, t h e   r e s u l t a n t   t h r u s t   a n g l e  a t  NPR > 8 i s  
12O t o  16O. The  magnitude  of  the  reduction i n   ( F  - D ) / F i  f o r  a 12O misalignment  of 
t he   t h rus t   vec to r  i s  0.022,  which is  s i g n i f i c a n t   b u t   n o t  enough to  account   for  a l l  
t h e   d i f f e r e n c e s   s e e n   i n   f i g u r e  30 a t  M > 1.60.  The  remaining  difference i s  probably 
due t o   n o n e f f i c i e n t   t u r n i n g  of the  exhaust   f low  a long  the ramp ( r e f s .  3, 7,  and  12). 
Nonetheless, optimum alignment  of  the SERN resu l tan t   th rus t   vec tor   angle   to   min imize  
t h i s   t h r u s t  loss would r e s u l t   i n   h i g h e r  performance.  (See refs. 4,  7, 8 ,  and  17.) 
This  could be accomplished by varying the external  expansion ramp f lap t h a t  i s  nor- 
mally  used for  thrust   vector ing.   Control  of the  external   expansion ramp f l a p   a n g l e  
through  an  integrated  f l ight/propulsion  control  system  could maximize SERN aeropro- 
puls ive   per formance   and   a l so   e l imina te   e i ther  nose-up or nose-down p i t ch ing  moments 
t h a t  would occur  from  the  nonaligned  gross  thrust  vector. 

" 

Wedge nozzle.- In   general ,   the  A/B power wedge nozzle  has somewhat higher per- 
formance  than  the  axisymmetric  nozzle a t  NPR < 6 ( f ig .   24) .   This   nozzle ,  however, 
has  lower performance  than  the  axisymmetric  nozzle a t  the  scheduled NPR over the  Mach 
number range ( f ig .  30). As with the SEW, the performance  of t h i s   nozz le  is also a 
funct ion  of   the  external   expansion ratio and it may be tha t   t he   i n t e rna l   expans ion  
ratio of t h i s   nozz le  is  too  high.  Research  has  not  been  conducted to  da te  to  opti- 
mize the  performance of these  types  of  nozzles a t  supersonic  speeds. 

The r e s u l t s  shown i n   f i g u r e  30 for  dry  and A / B  power over a wide Mach number 
range are s ignif icant   because  they  demonstrate   that  2-D C-D nozzles  can be i n s t a l l e d  
on a twin-engine f i g h t e r  and  generate  higher  installed  thrust-minus-drag  characteris-  
t ics  than  the  baseline  airplane  axisymmetric  nozzles  which have  been refined  through 
a complete development program. The SERN and  the wedge nozz le   a l so  show advantages 
under some conditions  and may be capable of cons iderable   fur ther  improvement. 

Afterbody  Drag C h a r a c t e r i s t i c s  

The v a r i a t i o n  of afterbody  drag CD a f t  wi th   nozz le   p ressure   ra t io  4 , -  
i s  p resen ted   i n   f i gu res  19 t o  22 f o r  each nozzle  type  and  expansion  ratio pk$At a t  
Mach numbers  from 0.60 t o  2.20.  Afterbody  drag  coefficients were obtained by d e t e r  
mining  the components  of t h r u s t   i n   t h e   a x i a l   a n d  normal d i r ec t ions   and   sub t r ac t ing  
these  values  from the  measured  afterbody  forces. The t h r u s t  components a t  forward 
speeds are determined  from  measured s ta t ic  da ta  ( M  = 0) and are a function  of  the 
free-stream s ta t ic  and  dynamic pressure. Because  of t h i s ,  any e f f e c t s  of the  exter- 
n a l  f low  on  the  internal  performance of e i t h e r   t h e  SERN or t h e  wedge nozzle are 
r e f l e c t e d  as a change in   a f te rbody  drag .  
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Typical  comparisons of F-18 afterbody  drag  between  the  various  nozzles are shown 
a t  subsonic  and  supersonic  speeds i n   f i g u r e s  25 and 26, respec t ive ly .  A summary of 
a f te rbody  drag   coef f ic ien t  a t  scheduled  pressure ra t io  i s  given i n   f i g u r e  31. Incre- 
mental  afterbody  drag i s  presented i n  f i g u r e  32. A negat ive  increment   indicates  
lower af   terbody  drag  for   the F-18 with  nonaxisymmetric  nozzles  installed. 

An examination of t he   bas i c  data of f i g u r e s  25 and 26 shows no cons i s t en t   t r ends  
of a f   t e rbody  drag   var ia t ion   for   the  F-  18 with  the  nonaxisymmetric  nozzles.  Afterbody 
drag  for  the  nonaxisymmetric  nozzle  configurations  can  be  greater or less than  the 
F-18 with  the  axisymmetric  nozzle  depending upon power s e t t i n g ,  Mach number, and 
pressure ratio. Nonetheless,   the  nonaxisymmetric  nozzle  drag  characterist ics are 
gene ra l ly   qu i t e   f avorab le   r e l a t ive  t o  those of the  axisymmetric  nozzles,   particularly 
a t  the  lowest   and  highest  Mach numbers. Also, overa l l ,   the   conf igura t ion   wi th   the  
wedge nozzle   has   the lowest afterbody  drag.  This result is  probably  because of t he  
low b o a t t a i l   a n g l e  of the  wedge nozzle cowl. 

T h i s   r e s u l t  is  f u r t h e r   i l l u s t r a t e d   i n   t h e  summary data of f i g u r e  32 where incre- 
mental  afterbody drag i s  shown over  the Mach number range a t  the  scheduled  nozzle 
p r e s s u r e   r a t i o s   ( f i g .  2 7 )  shown i n   f i g u r e  31. For  both  the  dry  and A/B power set- 
t i ngs ,   t he  wedge nozzle  always  has lower afterbody  drag  than  the  axisymmetric  nozzle. 
The 2-D C-D conf igu ra t ion   a l so   has  lower drag  than  the  axisymmetric  nozzle  except  in 
the  A/B power a t  subsonic  and  transonic speeds. The SEFW d r a g   c h a r a c t e r i s t i c s  are 
general ly  similar t o  those of the  2-D C-D nozzle  except  that   the  axisymmetric  nozzle 
drag  values  are a l s o  exceeded a t  M = 0.90 and M = 1.60 i n  dry power ( f i g .  3 2 ) .  
However, i n   gene ra l ,   t he  data shown i n   f i g u r e  32 indicate  that   nonaxisymmetric noz- 
z l e s  have lower afterbody  drag  than  the  axisymmetric  nozzle a t  dry power s e t t i n g .  

CONCLUSIONS 

An inves t iga t ion  to  determine the ae ropropu l s ive   cha rac t e r i s t i c s  of  nonaxisym- 
metric nozzles  on an F-18 j e t  e f f e c t s  model has  been  conducted i n   t h e  Langley l6-~oot 
Transonic  Tunnel  and  the AEDC l6-~oot Supersonic Wind Tunnel. The performance  of a 
two-dimensional  convergent-divergent  nozzle (2-D  C-D),  a single  expansion ramp nozzle 
(SERN), and a wedge nozzle w a s  compared w i t h   t h a t  of the  baseline  axisymmetric noz- 
z le .  Test da ta  were obtained a t  static conditions  and a t  Mach numbers from 0.60 t o  
2.20 a t   a n   a n g l e  of a t t a c k  of Oo. Nozzle   pressure  ra t io  w a s  va r i ed  from j e t -o f f   t o  
about 20. Resul t s  of this   s tudy  indicate   the  fol lowing  conclusions:  

1. Afterbody  aeropropulsive  performance is  equal t o  or h ighe r   fo r   t he  F-18 with  
2-D C-D nozzles   than  for   the  configurat ion  with  the  axisymmetr ic   nozzles .  

2. A t  dry power, t he  SERN and  the wedge nozzle   configurat ions ( a t  supersonic 
speeds) also had higher  performance  than  the F-18 with  the  axisymmetric 
nozzles. 

3. The a f t e rbu rne r  power SERN had poorer performance  than  the  axisymmetric noz- 
zle  because of the nonoptimum alignment of the   r e su l t an t   g ros s   t h rus t  vec- 
tor  and  probable   adverse  external   f low  effects .  

I 

i 
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4. The F-18 with  the  nonaxisymmetric  nozzles  generally  had lower af  terbody  drag 
than  the  axisymmetric  nozzle  configuration a t  dry power. 

Langley  Research  Center 
National  .Aeronautics  and  Space  Administration 
Hampton, VA 23665 
June 29, 1982 
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TABLE 1.- NOZZLE PARAMETERS 
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FS 1 
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Metric break 
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F a i r e d   i n l e t  

0.95 

- I -Nozzle  connect 
s t a t i o n  

I 

FS 116.47 
Moment reference  center  

FS 169.32 

Figure 1.- F-18 model. Linear  dimensions are in   cen t imeters .  



(a) Langley l 6 - ~ o o t  Transonic Tunnel. 

Figure 2.- F-18 model i n s t a l l e d  i n  tunnels. 



(b) AEDC 16-Foot Supersonic Wind Tunnel. 

Figure 2. - Concluded. 
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FS 144.78 

~nternal flow system, axisymmetric  nozzles 

Internal flow system, nonaxisymmetric  nozzles 

Figure 3.- Internal flaw systems showing flaw transfer  assemblies. 
Linear  dimensions are  in  centimeters. 



L-78-1646 

Figure 4.- Baseline  axisymmetric  nozzles,  dry pmer, i n s t a l l e d  on F-18 model. 
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Figure 5.-.Axisymmetric  nozzle. Linear  dimensions  are  in centimeters. 
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Figure 7 . -  2-D C-D nozzle, dry power, insta l led  on F-18 model. 
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Figure 8.- 2-D C-D nozzle.  Nozzle  has  diverging  sidewalls from FS 171.09 t o  
FS 173.-09; nozzle  width from FS 173.09 t o  e x i t  i s  7.74 cm. Linear  dimensions 
are i n  centimeters. 



Figure 9.-  Overall  view of SERN i n s t a l l e d  on F-18 model. 
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Figure  10.- SERN. Nozzle   has  diverging  s idewalls  from FS 169.32 to FS 
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L-78-2555 
Figure 1 1 . -  Overall view of wedge nozzle i n s t a l l e d  on F-18 model. 
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Figure 12.- Wedge nozzle.  Nozzle  has  diverging sidewalls from FS 169.32 t o  
FS 171.86; nozzle  width from FS 171.86 to e x i t  i s  7.21 cm. Linear  dimensions are 
in  centimeters.  
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Figure 13.- Composite  view of external lines of nozzles and  some afterbody 
cross  sections. 
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